71 research outputs found

    Effect of neutrophil elastase and its inhibitor EPI-hNE4 on transepithelial sodium transport across normal and cystic fibrosis human nasal epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperactivity of the epithelial sodium (Na<sup>+</sup>) channel (ENaC) and increased Na<sup>+ </sup>absorption by airway epithelial cells leading to airway surface liquid dehydration and impaired mucociliary clearance are thought to play an important role in the pathogenesis of cystic fibrosis (CF) pulmonary disease. In airway epithelial cells, ENaC is constitutively activated by endogenous trypsin-like serine proteases such as Channel-Activating Proteases (CAPs). It was recently reported that ENaC activity could also be stimulated by apical treatment with human neutrophil elastase (hNE) in a human airway epithelial cell line, suggesting that hNE inhibition could represent a novel therapeutic approach for CF lung disease. However, whether hNE can also activate Na<sup>+ </sup>reabsorption in primary human nasal epithelial cells (HNEC) from control or CF patients is currently unknown.</p> <p>Methods</p> <p>We evaluated by short-circuit current (<it>I</it><sub>sc</sub>) measurements the effects of hNE and EPI-hNE4, a specific hNE inhibitor, on ENaC activity in primary cultures of HNEC obtained from control (9) and CF (4) patients.</p> <p>Results</p> <p>Neither hNE nor EPI-hNE4 treatments did modify <it>I</it><sub>sc </sub>in control and CF HNEC. Incubation with aprotinin, a Kunitz-type serine protease inhibitor that blocks the activity of endogenous CAPs, decreased <it>I</it><sub>sc </sub>by 27.6% and 54% in control and CF HNEC, respectively. In control and CF HNEC pretreated with aprotinin, hNE did significantly stimulate <it>I</it><sub>sc</sub>, an effect which was blocked by EPI-hNE4.</p> <p>Conclusions</p> <p>These results indicate that hNE does activate ENaC and transepithelial Na<sup>+ </sup>transport in both normal and CF HNEC, on condition that the activity of endogenous CAPs is first inhibited. The potent inhibitory effect of EPI-hNE4 on hNE-mediated ENaC activation observed in our experiments highlights that the use of EPI-hNE4 could be of interest to reduce ENaC hyperactivity in CF airways.</p

    Matrix Metalloproteinase-8 Mediates the Unfavorable Systemic Impact of Local Irradiation on Pharmacokinetics of Anti-Cancer Drug 5-Fluorouracil

    Get PDF
    Concurrent chemoradiation with 5-fluorouracil (5-FU) is widely accepted for cancer treatment. However, the interactions between radiation and 5-FU remain unclear. Here, we evaluated the influence of local irradiation on the pharmacokinetics of 5-FU in rats. The single-fraction radiation was delivered to the whole pelvic fields of Sprague-Dawley rats after computerized tomography-based planning. 5-FU at 100 mg/kg was prescribed 24 hours after radiation. A high-performance liquid chromatography system was used to measure 5-FU in the blood. Matrix metalloproteinase-8 (MMP-8) inhibitor I was administered to examine whether or not RT modulation of 5-FU pharmacokinetic parameters could be blocked. Compared with sham-irradiated controls, whole pelvic irradiation reduced the area under the concentration versus time curve (AUC) of 5-FU in plasma and, in contrast, increased in bile with a radiation dose-dependent manner. Based on protein array analysis, the amount of plasma MMP-8 was increased by whole pelvic irradiation (2.8-fold by 0.5 Gy and 5.3-fold by 2 Gy) in comparison with controls. Pretreatment with MMP-8 inhibitor reversed the effect of irradiation on AUC of 5-FU in plasma. Our findings first indicate that local irradiation modulate the systemic pharmacokinetics of 5-FU through stimulating the release of MMP-8. The pharmacokinetics of 5-FU during concurrent chemoradiaiton therapy should be rechecked and the optimal 5-FU dose should be reevaluated, and adjusted if necessary, during CCRT

    K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung epithelial Na<sup>+ </sup>channels (ENaC) are regulated by cell Ca<sup>2+ </sup>signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K<sup>+ </sup>channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K<sup>+ </sup>channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC) by up-regulating both apical and basolateral ion transport.</p> <p>Methods</p> <p>Verapamil-induced depression of heterologously expressed human αβγ ENaC in <it>Xenopus </it>oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441), and <it>in vivo </it>alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca<sup>2+ </sup>signal in H441 cells was analyzed using Fluo 4AM.</p> <p>Results</p> <p>The rate of <it>in vivo </it>AFC was reduced significantly (40.6 ± 6.3% of control, <it>P </it>< 0.05, n = 12) in mice intratracheally administrated verapamil. K<sub>Ca3.1 </sub>(1-EBIO) and K<sub>ATP </sub>(minoxidil) channel openers significantly recovered AFC. In addition to short-circuit current (Isc) in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca<sup>2+ </sup>signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca<sup>2+ </sup>in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, K<sub>V </sub>(pyrithione-Na), K <sub>Ca3.1 </sub>(1-EBIO), and K<sub>ATP </sub>(minoxidil) channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na<sup>+ </sup>and K<sup>+ </sup>transport pathways.</p> <p>Conclusions</p> <p>Our observations demonstrate that K<sup>+ </sup>channel openers are capable of rescuing reduced vectorial Na<sup>+ </sup>transport across lung epithelial cells with impaired Ca<sup>2+ </sup>signal.</p

    Studies of η\eta and η′\eta' production in pppp and ppPb collisions

    Full text link
    The production of η\eta and η′\eta' mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.025.02 and 13 TeV13~{\rm TeV}, and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16 TeV8.16~{\rm TeV}. The studies are performed in center-of-mass rapidity regions 2.5<yc.m.<3.52.5<y_{\rm c.m.}<3.5 (forward rapidity) and −4.0<yc.m.<−3.0-4.0<y_{\rm c.m.}<-3.0 (backward rapidity) defined relative to the proton beam direction. The η\eta and η′\eta' production cross sections are measured differentially as a function of transverse momentum for 1.5<pT<10 GeV1.5<p_{\rm T}<10~{\rm GeV} and 3<pT<10 GeV3<p_{\rm T}<10~{\rm GeV}, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for η\eta and η′\eta' mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of η\eta mesons are also used to calculate η/π0\eta/\pi^0 cross section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as η\eta and η′\eta' meson fragmentation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2023-030.html (LHCb public pages

    Observation of Cabibbo-suppressed two-body hadronic decays and precision mass measurement of the Ωc0\Omega_{c}^{0} baryon

    Full text link
    The first observation of the singly Cabibbo-suppressed Ωc0→Ω−K+\Omega_{c}^{0}\to\Omega^{-}K^{+} and Ωc0→Ξ−π+\Omega_{c}^{0}\to\Xi^{-}\pi^{+} decays is reported, using proton-proton collision data at a centre-of-mass energy of 13 TeV13\,{\rm TeV}, corresponding to an integrated luminosity of 5.4 fb−15.4\,{\rm fb}^{-1}, collected with the LHCb detector between 2016 and 2018. The branching fraction ratios are measured to be B(Ωc0→Ω−K+)B(Ωc0→Ω−π+)=0.0608±0.0051(stat)±0.0040(syst)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}K^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.0608\pm0.0051({\rm stat})\pm 0.0040({\rm syst}), B(Ωc0→Ξ−π+)B(Ωc0→Ω−π+)=0.1581±0.0087(stat)±0.0043(syst)±0.0016(ext)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Xi^{-}\pi^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.1581\pm0.0087({\rm stat})\pm0.0043({\rm syst})\pm0.0016({\rm ext}). In addition, using the Ωc0→Ω−π+\Omega_{c}^{0}\to\Omega^{-}\pi^{+} decay channel, the Ωc0\Omega_{c}^{0} baryon mass is measured to be M(Ωc0)=2695.28±0.07(stat)±0.27(syst)±0.30(ext) MeV/c2M(\Omega_{c}^{0})=2695.28\pm0.07({\rm stat})\pm0.27({\rm syst})\pm0.30({\rm ext})\,{\rm MeV}/c^{2}, improving the precision of the previous world average by a factor of four.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-011.html (LHCb public pages

    Fraction of χc\chi_c decays in prompt J/ψJ/\psi production measured in pPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV

    Full text link
    The fraction of χc1\chi_{c1} and χc2\chi_{c2} decays in the prompt J/ψJ/\psi yield, Fχc=σχc→J/ψ/σJ/ψF_{\chi c}=\sigma_{\chi_c \to J/\psi}/\sigma_{J/\psi}, is measured by the LHCb detector in pPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV. The study covers the forward (1.5<y∗<4.01.5<y^*<4.0) and backward (−5.0<y∗<−2.5-5.0<y^*<-2.5) rapidity regions, where y∗y^* is the J/ψJ/\psi rapidity in the nucleon-nucleon center-of-mass system. Forward and backward rapidity samples correspond to integrated luminosities of 13.6 ±\pm 0.3 nb−1^{-1} and 20.8 ±\pm 0.5 nb−1^{-1}, respectively. The result is presented as a function of the J/ψJ/\psi transverse momentum pT,J/ψp_{T,J/\psi} in the range 1<pT,J/ψ<20<p_{T, J/\psi}<20 GeV/cc. The FχcF_{\chi c} fraction at forward rapidity is compatible with the LHCb measurement performed in pppp collisions at s=7\sqrt{s}=7 TeV, whereas the result at backward rapidity is 2.4 σ\sigma larger than in the forward region for 1<pT,J/ψ<31<p_{T, J/\psi}<3 GeV/cc. The increase of FχcF_{\chi c} at low pT,J/ψp_{T, J/\psi} at backward rapidity is compatible with the suppression of the ψ\psi(2S) contribution to the prompt J/ψJ/\psi yield. The lack of in-medium dissociation of χc\chi_c states observed in this study sets an upper limit of 180 MeV on the free energy available in these pPb collisions to dissociate or inhibit charmonium state formation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-028.html (LHCb public pages

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to Script O(1012). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Momentum scale calibration of the LHCb spectrometer

    Get PDF
    For accurate determination of particle masses accurate knowledge of the momentum scale of the detectors is crucial. The procedure used to calibrate the momentum scale of the LHCb spectrometer is described and illustrated using the performance obtained with an integrated luminosity of 1.6 fb-1collected during 2016 in pp running. The procedure uses large samples of J/ψ → μ+μ- and B+ → J/ψK+ decays and leads to a relative accuracy of 3 × 10-4 on the momentum scale

    Measurement of ZZ boson production cross-section in pppp collisions at s=5.02\sqrt{s} = 5.02 TeV

    Full text link
    The first measurement of the ZZ boson production cross-section at centre-of-mass energy s=5.02 \sqrt{s} = 5.02\,TeV in the forward region is reported, using pppp collision data collected by the LHCb experiment in year 2017, corresponding to an integrated luminosity of 100±2 pb−1100 \pm 2\,\rm{pb^{-1}}. The production cross-section is measured for final-state muons in the pseudorapidity range 2.020 GeV/c2.0 20\,\rm{GeV/}\it{c}. The integrated cross-section is determined to be σZ→μ+μ−=39.6±0.7 (stat)±0.6 (syst)±0.8 (lumi) pb \sigma_{Z \rightarrow \mu^{+}\mu^{-}} = 39.6 \pm 0.7\,(\rm{stat}) \pm 0.6\,(\rm{syst}) \pm 0.8\,(\rm{lumi}) \ \rm{pb} for the di-muon invariant mass in the range 60<Mμμ<120 GeV/c260<M_{\mu\mu}<120\,\rm{GeV/}\it{c^{2}}. This result and the differential cross-section results are in good agreement with theoretical predictions at next-to-next-to-leading order in the strong coupling. Based on a previous LHCb measurement of the ZZ boson production cross-section in ppPb collisions at sNN=5.02\sqrt{s_{NN}}=5.02 TeV, the nuclear modification factor RpPbR_{p\rm{Pb}} is measured for the first time at this energy. The measured values are 1.2−0.3+0.5 (stat)±0.1 (syst)1.2^{+0.5}_{-0.3}\,(\rm{stat}) \pm 0.1\,(\rm{syst}) in the forward region (1.53<yμ∗<4.031.53<y^*_{\mu}<4.03) and 3.6−0.9+1.6 (stat)±0.2 (syst)3.6^{+1.6}_{-0.9}\,(\rm{stat}) \pm 0.2\,(\rm{syst}) in the backward region (−4.97<yμ∗<−2.47-4.97<y^*_{\mu}<-2.47), where yμ∗y^*_{\mu} represents the muon rapidity in the centre-of-mass frame.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-010.html (LHCb public pages

    Enhanced production of Λb0\Lambda_{b}^{0} baryons in high-multiplicity pppp collisions at s=13\sqrt{s} = 13 TeV

    Full text link
    The production rate of Λb0\Lambda_{b}^{0} baryons relative to B0B^{0} mesons in pppp collisions at a center-of-mass energy s=13\sqrt{s} = 13 TeV is measured by the LHCb experiment. The ratio of Λb0\Lambda_{b}^{0} to B0B^{0} production cross-sections shows a significant dependence on both the transverse momentum and the measured charged-particle multiplicity. At low multiplicity, the ratio measured at LHCb is consistent with the value measured in e+e−e^{+}e^{-} collisions, and increases by a factor of ∼2\sim2 with increasing multiplicity. At relatively low transverse momentum, the ratio of Λb0\Lambda_{b}^{0} to B0B^{0} cross-sections is higher than what is measured in e+e−e^{+}e^{-} collisions, but converges with the e+e−e^{+}e^{-} ratio as the momentum increases. These results imply that the evolution of heavy bb quarks into final-state hadrons is influenced by the density of the hadronic environment produced in the collision. Comparisons with a statistical hadronization model and implications for the mechanisms enforcing quark confinement are discussed.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-027.html (LHCb public pages
    • …
    corecore